

ЦЕЛЬНЫЕ КОНЦЕВЫЕ ФРЕЗЫ

РАСШИРЕНИЕ ACCOPTИMEHTA VARIMILL™

Высокопроизводительные цельные твердосплавные концевые фрезы

Твердосплавные концевые фрезы VariMill I™ и VariMill II™ это признанный лидер в области высокопроизводительного безвибрационного фрезерования. Фрезы серии VariMill универсальны в применении и являются надежным и высокопроизводительным решением для широкого спектра операций и обрабатываемых материалов.

VariMili

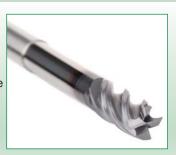
- Высокопроизводительный универсальный инструмент для обработки большинства материалов.
- Один инструмент для черновой и чистовой обработки.
- Различные длины режущей части.
- Ассортимент включает фрезы с увеличенным вылетом и с занижением по диаметру, со сферическим концом, с фаской или скруглением вершины.

Серии VariMill I™ и VariMill II™

- Повышение производительности за счет меньшего числа смен инструмента и увеличения удельного съема металла (MRR).
- Отсутствие необходимости в отдельных инструментах для черновой и чистовой обработки.
- Возможность обработки пазов глубиной до 1 x D позволяет сократить число проходов (не рекомендуется для серий 4717 и 4727).

Серия 4717

• Длина режущей части 3,5 x D.


Серия 4727

• Длина режущей части 5-6 x D.

Серия 47N6

• Увеличенный вылет и занижение по диаметру позволяют обрабатывать глубокие полости.

Серия 47N7 TIALN

• Новая геометрия и покрытие TIALN обеспечивают высокий удельный съем металла (MRR) и повышенную стойкость инструмента при обработке конструкционной и нержавеющей стали.

• Радиус скругления и занижение по диаметру обеспечивают увеличенную глубину резания, устраняя необходимость дополнительных проходов.

Серия 47N7 ALTIN

• Новая геометрия и покрытие ALTIN обеспечивают высокий удельный съем металла (MRR) и повышенную стойкость инструмента при обработке титана и нержавеющей стали.

• Радиус скругления и занижение по диаметру обеспечивают увеличенную глубину резания, устраняя необходимость дополнительных проходов.

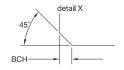
Серия 577С

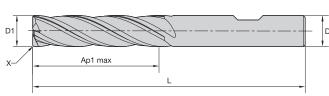
• Пятизубая фреза с режущей кромкой у центра обеспечивает максимальный удельный съем металла (MRR).

• Увеличенная стойкость инструмента при обработке конструкционной и нержавеющей стали.

Высокопроизводительные цельные твердосплавные **концевые фрезы • VariMill**™ Серия 4717 • VariMill I™

- Неравномерное расположение зубьев.
- Режущая кромка у центра.
- В таблицах представлены стандартные позиции. Дополнительные типы и покрытия доступны по заказу.





	точность из	и отовления	
D1	Допуск е8	D	Допуск h6 + / -
≤3	-0,014/-0,028	≤3	0/0,006
>3-6	-0,020/-0,038	>3-6	0/0,008
>6–10	-0,025/-0,047	>6–10	0/0,009
>10–18	-0,032/-0,059	>10–18	0/0,011
>18–30	-0,040/-0,073	>18–30	0/0,013

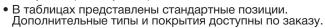
	Р							M				K			S			
	1	2	3	4	5	6	1	2	3	1	2	3	1	2	3	4	1	
TIALN	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	
Р — Сталь					_	,	ун				5	S —	- Ж	аро	•	ЭЧН	ые	

– Нержавеющая сталь

N — Цветные . металлы

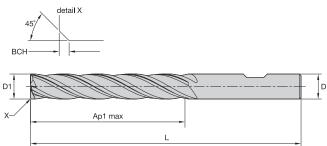
Н — Закаленная сталь

■ Серия 4717 • VariMill I


			глубина резания	длина	
TIALN-LW	D1	D	Ap1 max	L	BCH
471706002LW	6,0	6	32,00	76	0,40
471708003LW	8,0	8	32,00	87	0,40
471710004LW	10,0	10	38,00	89	0,50
471712005LW	12,0	12	51,00	100	0,50
471716006LW	16,0	16	57,00	125	0,50
471720007LW	20,0	20	57,00	125	0,50

Высокопроизводительные цельные твердосплавные концевые фрезы • VariMill ™ Серия 4727 • VariMill I™

- Неравномерное расположение зубьев.
- Режущая кромка у центра.



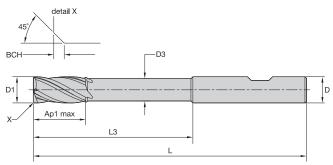
	Точность из	вготовления	
D1	Допуск е8	D	Допуск h6 + / -
≤3	-0,014/-0,028	≤3	0/0,006
>3-6	-0,020/-0,038	>3-6	0/0,008
>6–10	-0,025/-0,047	>6–10	0/0,009
>10–18	-0,032/-0,059	>10–18	0/0,011
>18–30	-0,040/-0,073	>18–30	0/0,013

	P					M				K			S				
	1	2	3	4	5	6	1	2	3	1	2	3	1	2	3	4	1
TIALN	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
Р — Сталь М — Нержа сталь	век	оща	Я		_	Чуг Цве мет	, ЭТНІ						- 3a	лав	іені		ые

■ Серия 4727 • VariMill I

			глубина резания	длина	
TIALN-LW	D1	D	Ap1 max	L	BCH
472712005LW	12,0	12	76,00	125	0,50
472716006LW	16,0	16	76,00	87	0,50
472720007LW	20,0	20	102,00	89	0,50

Высокопроизводительные цельные твердосплавные


концевые фрезы • VariMill[™] Серия 47N6 • VariMill I[™] • С занижением по диаметру

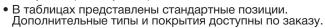
- Неравномерное расположение зубьев.
- Режущая кромка у центра.
- В таблицах представлены стандартные позиции. Дополнительные типы и покрытия доступны по заказу.

	Точность изготовления												
	_	_	Допуск h6 + / -										
D1	Допуск е8	D	+/-										
≤3	-0,014/-0,028	≤3	0/0,006										
>3-6	-0,020/-0,038	>3-6	0/0,008										
>6–10	-0,025/-0,047	>6–10	0/0,009										
>10–18	-0,032/-0,059	>10–18	0/0,011										
>18–30	-0,040/-0,073	>18–30	0/0,013										

				P				M			K			•	5		Н
	1	2	3	4	5	6	1	2	3	1	2	3	1	2	3	4	1
TIALN	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
Р — Сталь				K	_	Чуг	ун					S —	- Ж	аро	про	ЭЧН	ые
М — Нерж	авен	оща	Я	Λ	<i></i>	Цв	етн	ые					СП	лав	ВЫ		
сталь						ме	тал	ПЫ			I	H —	- 3a	кал	тені	чая	
va													CT	аль			

■ Серия 47N6 • VariMill I • С занижением по диаметру

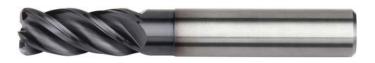
				глубина резания		длина	
TIALN-LW	D1	D	D3	Ap1 max	L3	L	BCH
47N606002LW	6,0	6	5,50	12,00	42,00	100	0,40
47N608003LW	8,0	8	7,30	16,00	62,00	100	0,40
47N610004LW	10,0	10	9,10	20,00	60,00	100	0,50
47N612005LW	12,0	12	11,00	24,00	73,00	125	0,50
47N616006LW	16,0	16	14,56	32,00	100,00	150	0,50
47N620007LW	20,0	20	18,20	40,00	98,00	175	0,50

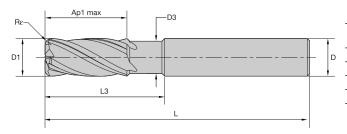


Высокопроизводительные цельные твердосплавные

концевые фрезы • VariMilI $^{\text{™}}$ Серия 47N7 TIALN • VariMilI $^{\text{™}}$ • С занижением по диаметру

- Неравномерное расположение зубьев.
- Режущая кромка у центра.





	Точность из	вготовления	
D4	D amus 20	D	Допуск h6 + / -
D1	Допуск е8	U	T/-
≤3	-0,014/-0,028	≤3	0/0,006
>3-6	-0,020/-0,038	>3-6	0/0,008
>6–10	-0,025/-0,047	>6–10	0/0,009
>10–18	-0,032/-0,059	>10–18	0/0,011
>18–30	-0,040/-0,073	>18–30	0/0,013

	Р							M K						S					
	1	2	3	4	5	6	1	2	3	1	2	3	1	2	3	4	1		
TIALN	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•		

Р — Сталь М — Нержавеющая сталь К — Чугун N — Цветные металлы S — Жаропрочные сплавы H — Закаленная

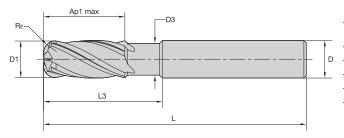
сталь

■ Серия 47N7 TIALN • VariMill I • С занижением по диаметру

				глубина резания		длина	
TIALN-LT	D1	D	D3	Ap1 max	L3	L	Rε
47N704002LT	4,0	6	3,60	12,00	16,00	55	0,40
47N704012LT	4,0	6	3,60	12,00	16,00	55	0,50
47N704022LT	4,0	6	3,60	12,00	16,00	55	1,00
47N705002LT	5,0	6	4,60	13,00	18,00	57	0,50
47N705012LT	5,0	6	4,60	13,00	18,00	57	1,00
47N706002LT	6,0	6	5,50	13,00	21,00	57	0,50
47N706012LT	6,0	6	5,50	13,00	21,00	57	1,00
47N706022LT	6,0	6	5,50	13,00	21,00	57	1,50
47N708003LT	8,0	8	7,50	16,00	27,00	63	0,50
47N708013LT	8,0	8	7,50	16,00	27,00	63	1,00
47N708023LT	8,0	8	7,50	16,00	27,00	63	1,50
47N708033LT	8,0	8	7,50	16,00	27,00	63	2,00
47N710004LT	10,0	10	9,50	22,00	32,00	72	0,50
47N710014LT	10,0	10	9,50	22,00	32,00	72	1,00
47N710024LT	10,0	10	9,50	22,00	32,00	72	1,50
47N710034LT	10,0	10	9,50	22,00	32,00	72	2,00
47N712005LT	12,0	12	11,50	26,00	38,00	83	0,50
47N712015LT	12,0	12	11,50	26,00	38,00	83	1,00
47N712025LT	12,0	12	11,50	26,00	38,00	83	1,50
47N712035LT	12,0	12	11,50	26,00	38,00	83	2,00
47N712045LT	12,0	12	11,50	26,00	38,00	83	4,00
47N716006LT	16,0	16	15,00	32,00	44,00	92	1,00
47N716016LT	16,0	16	15,00	32,00	44,00	92	2,00
47N716026LT	16,0	16	15,00	32,00	44,00	92	4,00
47N720007LT	20,0	20	19,00	38,00	55,00	104	1,00
47N720017LT	20,0	20	19,00	38,00	55,00	104	2,00
47N720027LT	20,0	20	19,00	38,00	55,00	104	4,00

Высокопроизводительные цельные твердосплавные

- Неравномерное расположение зубьев.
- Режущая кромка у центра.
- В таблицах представлены стандартные позиции. Дополнительные типы и покрытия доступны по заказу.



	Гочность из	вготовления	Потили БС
D1	Допуск е8	D	Допуск h6 + / -
≤3	-0,014/-0,028	≤3	0/0,006
>3-6	-0,020/-0,038	>3-6	0/0,008
>6-10	-0,025/-0,047	>6–10	0/0,009
>10–18	-0,032/-0,059	>10–18	0/0,011
>18–30	-0,040/-0,073	>18–30	0/0,013

			ı	•				M			K			;	3		Н
	1	2	3	4	5	6	1	2	3	1	2	3	1	2	3	4	1
ALTIN	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•

Р — Сталь М — Нержавеющая сталь К — Чугун N — Цветные металлы S — Жаропрочные сплавы H — Закаленная

сталь

■ Серия 47N7 ALTIN • VariMill I • С занижением по диаметру

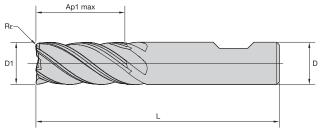
				глубина резания		длина	
ALTIN-MT	D1	D	D3	Ap1 max	L3	L	Rε
47N704012MT	4,0	6	3,60	12,00	16,00	55	0,50
47N705012MT	5,0	6	4,60	13,00	18,00	57	1,00
47N706002MT	6,0	6	5,50	13,00	21,00	57	0,50
47N706012MT	6,0	6	5,50	13,00	21,00	57	1,00
47N708003MT	8,0	8	7,50	16,00	27,00	63	0,50
47N708013MT	8,0	8	7,50	16,00	27,00	63	1,00
47N710004MT	10,0	10	9,50	22,00	32,00	72	0,50
47N710014MT	10,0	10	9,50	22,00	32,00	72	1,00
47N710034MT	10,0	10	9,50	22,00	32,00	72	2,00
47N712005MT	12,0	12	11,50	26,00	38,00	83	0,50
47N712015MT	12,0	12	11,50	26,00	38,00	83	1,00
47N712035MT	12,0	12	11,50	26,00	38,00	83	2,00
47N712045MT	12,0	12	11,50	26,00	38,00	83	4,00
47N716006MT	16,0	16	15,00	32,00	44,00	92	1,00
47N716016MT	16,0	16	15,00	32,00	44,00	92	2,00
47N716026MT	16,0	16	15,00	32,00	44,00	92	4,00
47N720007MT	20,0	20	19,00	38,00	55,00	104	1,00
47N720017MT	20,0	20	19,00	38,00	55,00	104	2,00
47N720027MT	20,0	20	19,00	38,00	55,00	104	4,00

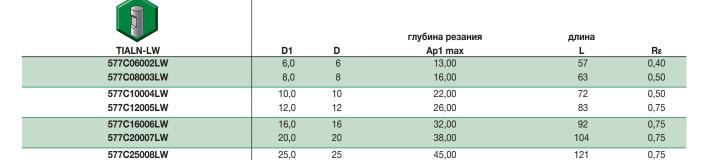
8

Высокопроизводительные цельные твердосплавные концевые фрезы ullet VariMill

Серия 577С • VariMill II™

- Неравномерное расположение зубьев.
- Режущая кромка у центра.
- В таблицах представлены стандартные позиции. Дополнительные типы и покрытия доступны по заказу.




	Точность из	готовления	
D1	Допуск е8	D	Допуск h6 + / -
D1			
≤3	-0,014/-0,028	≤3	0/0,006
>3-6	-0,020/-0,038	>3-6	0/0,008
>6–10	-0,025/-0,047	>6–10	0/0,009
>10–18	-0,032/-0,059	>10–18	0/0,011
>18–30	-0,040/-0,073	>18–30	0/0,013

			- 1	•				M			K				S		Н
	1	2	3	4	5	6	1	2	3	1	2	3	1	2	3	4	1
TIALN	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
Р — Сталь				K	_	Чуг	ун					S —	- Ж	аро	про	ЭЧНІ	ые

Р — Сталь М — Нержавеющая сталь N — Чугун N — Цветные металлы S — Жаропрочны сплавы

H — Закаленная сталь

■ Серия 577С • VariMill II

Высокопроизводительные цельные твердосплавные концевые фрезы • VariMill™

Рекомендации по применению • Серии 4717 и 4727 • VariMill I™

									Серия 4	717	7 • Vari	Mill I								
		Торц	евое			1														
		фрезеро																		
		4	истовая	обработ	гка		46	ерновая	обработ	ка										
		<i>A</i>	A	TI	ALN	I	Δ	١.	TI	۱LN	I		Значені	ия подач	чи на зу	б fz для	торцево	го фрез	веровані	ля П
Гру	/ппа			Ско резания					Ско резания							D1 — Д	иаметр			
	риала	ар	ae	min		max	ар	ae	min		max	ММ	6,0	8,0	10,0	12,0	14,0	16,0	20,0	25,0
	1	Ap1 max	,	300	_	400	Ap1 max	0,2 x D	150	-	200	fz	0,044	0,060	0,072	0,083	0,092	0,101	0,114	0,124
	2	Ap1 max	0,5 x D*	280	-	380	Ap1 max	0,2 x D	140	-	190	fz	0,044	0,060	0,072	0,083	0,092	0,101	0,114	0,124
Р	3	Ap1 max	,	240	-	320	Ap1 max	0,2 x D	120	-	160	fz	0,036	0,050	0,061	0,070	0,079	0,087	0,101	0,114
	4	Ap1 max	0,5 x D*	180	-	300	Ap1 max	0,2 x D	90	-	150	fz	0,033	0,045	0,054	0,062	0,070	0,077	0,088	0,098
	5	Ap1 max	- / -	120	-	200	Ap1 max	0,2 x D	60	-	100	fz	0,029	0,040	0,048	0,056	0,063	0,070	0,081	0,091
	6	Ap1 max	0,5 x D*	100	-	150	Ap1 max	0,2 x D	50	-	75	fz	0,025	0,034	0,040	0,047	0,052	0,057	0,065	0,071
	1	Ap1 max	0,5 x D*	180	-	230	Ap1 max	0,2 x D	90	-	115	fz	0,036	0,050	0,061	0,070	0,079	0,087	0,101	0,114
M	2	Ap1 max	0,5 x D*	120	1-	160	Ap1 max	0,2 x D	60	-	80	fz	0,029	0,040	0,048	0,056	0,063	0,070	0,081	0,091
	3	Ap1 max	0,5 x D*	120	1-	140	Ap1 max	0,2 x D	60	_	70	fz	0,025	0,034	0,040	0,047	0,052	0,057	0,065	0,071
17	1	Ap1 max	0,5 x D*	240	-	300	Ap1 max	0,2 x D	120	-	150	fz	0,044	0,060	0,072	0,083	0,092	0,101	0,114	0,124
K	3	Ap1 max	0,5 x D*	220	1-	260	Ap1 max	0,2 x D	110	F	130	fz	0,036	0,050	0,061	0,070	0,079	0,087	0,101	0,114
	1	Ap1 max	0,5 x D*	200	\vdash	260 180	Ap1 max	0,2 x D	100 50	-	130 90	fz fz	0,029	0,040	0,048	0,056	0,063	0,070	0,081	0,091
		Ap1 max	0,5 x D*		1		Ap1 max			-			0,036	0,050	0,061		0,079			0,114
s	2	Ap1 max	0,5 x D*	50 120	1-	80	Ap1 max	0,2 x D	25 60	F	40 80	fz	0,019	0,026	0,032	0,037	0,042	0,046	0,054	0,061
	3	Ap1 max	0,5 x D*		-	160	Ap1 max	0,2 x D		-		fz	0,029	0,040	0,048	0,056	0,063	0,070	0,081	0,091
	4	Ap1 max	0,5 x D*	100	1-	120	Ap1 max	0,2 x D	50	-	60	fz	0,026	0,037	0,045	0,052	0,058	0,064	0,074	0,084
Н	1	Ap1 max	0,5 x D*	160	-	280	Ap1 max	0,2 x D	80	-	140	fz	0,033	0,045	0,054	0,062	0,070	0,077	0,088	0,098

 $^{^{\}star}$ При использовании вышеуказанных режимов резания общая ширина резания ае не должна превышать ≤ 0.8 мм.

ПРИМЕЧАНИЕ: нижнее значение скорости резания используется при выполнении операций со съемом большого припуска или при обработке более твердых материалов в пределах группы. Верхнее значение скорости резания используется при выполнении операций чистовой обработки или при обработке менее твердых материалов в пределах группы. Перечисленные выше режимы резания соответствуют идеальным условиям. При использовании фрез диаметром более 12 мм на обрабатывающих центрах невысокой мощности требуется корректировка табличных значений резания.

									Серия 4	72	7 • Vari	Mill I								
		ap de la				1														
		Торц фрезеро	евое вание (А)																	
		Ч	истовая	обработ	гка		46	рновая	обработ	ка										
		A	A	TI	ALN	I	Α	1	TIA	LN	I		Значені	ия подач	ни на зу	б fz для	торцево	го фрез	еровани	19
Γnν	/ппа			Ско резания					Ско _г резания							D1 — Д	иаметр			
	риала	ар	ae	min		max	ар	ae	min		max	ММ	6,0	8,0	10,0	12,0	14,0	16,0	20,0	25,0
	1	Ap1 max	0,5 x D*	300	-	400	Ap1 max	0,2 x D	150	-	200	fz	0,044	0,060	0,072	0,083	0,092	0,101	0,114	0,124
	2	Ap1 max	0,5 x D*	280	_	380	Ap1 max	0,2 x D	140	-	190	fz	0,044	0,060	0,072	0,083	0,092	0,101	0,114	0,124
P	3	Ap1 max	0,5 x D*	240	_	320	Ap1 max	0,2 x D	120	-	160	fz	0,036	0,050	0,061	0,070	0,079	0,087	0,101	0,114
	4	Ap1 max	0,5 x D*	180	_	300	Ap1 max	0,2 x D	90	-	150	fz	0,033	0,045	0,054	0,062	0,070	0,077	0,088	0,098
	5	Ap1 max	0,5 x D*	120	-	200	Ap1 max	0,2 x D	60	-	100	fz	0,029	0,040	0,048	0,056	0,063	0,070	0,081	0,091
	6	Ap1 max	0,5 x D*	100	-	150	Ap1 max	0,2 x D	50	-	75	fz	0,025	0,034	0,040	0,047	0,052	0,057	0,065	0,071
	1	Ap1 max	0,5 x D*	180	-	230	Ap1 max	0,2 x D	90	-	115	fz	0,036	0,050	0,061	0,070	0,079	0,087	0,101	0,114
M	2	Ap1 max	0,5 x D*	120	1-	160	Ap1 max	0,2 x D	60	-	80	fz	0,029	0,040	0,048	0,056	0,063	0,070	0,081	0,091
	3	Ap1 max	0,5 x D*	120	-	140	Ap1 max	0,2 x D	60	-	70	fz	0,025	0,034	0,040	0,047	0,052	0,057	0,065	0,071
	1	Ap1 max	0,5 x D*	240	-	300	Ap1 max	0,2 x D	120	-	150	fz	0,044	0,060	0,072	0,083	0,092	0,101	0,114	0,124
K	2	Ap1 max	0,5 x D*	220	1-	260	Ap1 max	0,2 x D	110	-	130	fz	0,036	0,050	0,061	0,070	0,079	0,087	0,101	0,114
	3	Ap1 max	0,5 x D*	200	-	260	Ap1 max	0,2 x D	100	-	130	fz	0,029	0,040	0,048	0,056	0,063	0,070	0,081	0,091
	1	Ap1 max	0,5 x D*	100	-	180	Ap1 max	0,2 x D	50	-	90	fz	0,036	0,050	0,061	0,070	0,079	0,087	0,101	0,114
s	2	Ap1 max	0,5 x D*	50	1-	80	Ap1 max	0,2 x D	25	-	40	fz	0,019	0,026	0,032	0,037	0,042	0,046	0,054	0,061
	3	Ap1 max	0,5 x D*	120	-	160	Ap1 max	0,2 x D	60	-	80	fz	0,029	0,040	0,048	0,056	0,063	0,070	0,081	0,091
	4	Ap1 max	0,5 x D*	100	-	120	Ap1 max	0,2 x D	50	-	60	fz	0,026	0,037	0,045	0,052	0,058	0,064	0,074	0,084
Н	1	Ap1 max	0,5 x D*	160	-	280	Ap1 max	0,2 x D	80	-	140	fz	0,033	0,045	0,054	0,062	0,070	0,077	0,088	0,098

^{*} При использовании вышеуказанных режимов резания общая ширина резания ае не должна превышать ≤ 0,8 мм.

ПРИМЕЧАНИЕ: нижнее значение скорости резания используется при выполнении операций со съемом большого припуска или при обработке более твердых материалов в пределах группы. Верхнее значение скорости резания используется при выполнении операций чистовой обработки или при обработке менее твердых материалов в пределах группы. Перечисленные выше режимы резания соответствуют идеальным условиям. При использовании фрез диаметром более 12 мм на обрабатывающих центрах невысокой мощности требуется корректировка табличных значений резания.

Высокопроизводительные цельные твердосплавные концевые фрезы. ◆ VariMill™

концевые фрезы ● VariMill Рекомендации по применению • Серии 47N6 и 47N7 • VariMill $I^{\text{\tiny M}}$ • С занижением по диаметру

							Ce	рия 47	N6 • VariN	Aill I						
			е фрезероват езание пазот													
		А		В	т	IAL	N							ого фрезе ньшите на		A).
Fnv	ппа				Скорос vc	ть р м/м						D1 — Д	иаметр			
матер		ар	ae	ар	min		max	ММ	4,0	6,0	8,0	10,0	12,0	16,0	20,0	25,0
	1	1,5 x D	0,5 x D	1 x D	150	-	200	fz	0,028	0,044	0,060	0,072	0,083	0,101	0,114	0,124
	2	1,5 x D	0,5 x D	1 x D	140	_	190	fz	0,028	0,044	0,060	0,072	0,083	0,101	0,114	0,124
P	3	1,5 x D	0,5 x D	1 x D	120	_	160	fz	0,023	0,036	0,050	0,061	0,070	0,087	0,101	0,114
	4	1,5 x D	0,5 x D	0,75 x D	90	_	150	fz	0,021	0,033	0,045	0,054	0,062	0,077	0,088	0,098
	5	1,5 x D	0,5 x D	1 x D	60	-	100	fz	0,019	0,029	0,040	0,048	0,056	0,070	0,081	0,091
	6	1,5 x D	0,5 x D	0,75 x D	50	-	75	fz	0,016	0,025	0,034	0,040	0,047	0,057	0,065	0,071
	1	1,5 x D	0,5 x D	1 x D	90	-	115	fz	0,023	0,036	0,050	0,061	0,070	0,087	0,101	0,114
M	2	1,5 x D	0,5 x D	1 x D	60	-	80	fz	0,019	0,029	0,040	0,048	0,056	0,070	0,081	0,091
	3	1,5 x D	0,5 x D	1 x D	60	-	70	fz	0,016	0,025	0,034	0,040	0,047	0,057	0,065	0,071
	1	1,5 x D	0,5 x D	1 x D	120	-	150	fz	0,028	0,044	0,060	0,072	0,083	0,101	0,114	0,124
K	2	1,5 x D	0,5 x D	1 x D	110	_	130	fz	0,023	0,036	0,050	0,061	0,070	0,087	0,101	0,114
	3	1,5 x D	0,5 x D	1 x D	100	-	130	fz	0,019	0,029	0,040	0,048	0,056	0,070	0,081	0,091
	1	1,5 x D	0,3 x D	0,3 x D	50	-	90	fz	0,023	0,036	0,050	0,061	0,070	0,087	0,101	0,114
s	2	1,5 x D	0,3 x D	0,3 x D	25	_	40	fz	0,013	0,019	0,026	0,032	0,037	0,046	0,054	0,061
	3	1,5 x D	0,5 x D	1 x D	60	-	80	fz	0,019	0,029	0,040	0,048	0,056	0,070	0,081	0,091
	4	1,5 x D	0,5 x D	1 x D	50	_	60	fz	0,016	0,026	0,037	0,045	0,052	0,064	0,074	0,084
H	1	1,5 x D	0,5 x D	0,75 x D	80	-	140	fz	0,021	0,033	0,045	0,054	0,062	0,077	0,088	0,098

ПРИМЕЧАНИЕ: нижнее значение скорости резания используется при выполнении операций со съемом большого припуска или при обработке более твердых материалов в пределах группы. Верхнее значение скорости резания используется при выполнении операций чистовой обработки или при обработке менее твердых материалов в пределах группы. Перечисленные выше режимы резания соответствуют идеальным условиям. При использовании фрез диаметром более 12 мм на обрабатывающих центрах невысокой мощности требуется корректировка табличных значений резания.

							Серия	47N7	TIALN • V	ariMill I						
			фрезерован				o o prin									
		A		В		IAL					іа зуб fz уі ания пазо					A).
Гру	ппа				Скорос vc	ть р м/м	езания, ин					D1 — Д	иаметр			
	риала	ар	ae	ар	min		max	ММ	4,0	6,0	8,0	10,0	12,0	16,0	20,0	25,0
	1	1,5 x D	0,5 x D	1 x D	150	-	200	fz	0,028	0,044	0,060	0,072	0,083	0,101	0,114	0,124
	2	1,5 x D	0,5 x D	1 x D	140	_	190	fz	0,028	0,044	0,060	0,072	0,083	0,101	0,114	0,124
Р	3	1,5 x D	0,5 x D	1 x D	120	-	160	fz	0,023	0,036	0,050	0,061	0,070	0,087	0,101	0,114
	4	1,5 x D	0,5 x D	0,75 x D	90	-	150	fz	0,021	0,033	0,045	0,054	0,062	0,077	0,088	0,098
	5	1,5 x D	0,5 x D	1 x D	60	-	100	fz	0,019	0,029	0,040	0,048	0,056	0,070	0,081	0,091
	6	1,5 x D	0,5 x D	0,75 x D	50	-	75	fz	0,016	0,025	0,034	0,040	0,047	0,057	0,065	0,071
	1	1,5 x D	0,5 x D	1 x D	90	-	115	fz	0,023	0,036	0,050	0,061	0,070	0,087	0,101	0,114
M	2	1,5 x D	0,5 x D	1 x D	60	-	80	fz	0,019	0,029	0,040	0,048	0,056	0,070	0,081	0,091
	3	1,5 x D	0,5 x D	1 x D	60	-	70	fz	0,016	0,025	0,034	0,040	0,047	0,057	0,065	0,071
	1	1,5 x D	0,5 x D	1 x D	120	-	150	fz	0,028	0,044	0,060	0,072	0,083	0,101	0,114	0,124
K	2	1,5 x D	0,5 x D	1 x D	110	-	130	fz	0,023	0,036	0,050	0,061	0,070	0,087	0,101	0,114
	3	1,5 x D	0,5 x D	1 x D	100	-	130	fz	0,019	0,029	0,040	0,048	0,056	0,070	0,081	0,091
	1	1,5 x D	0,3 x D	0,3 x D	50	-	90	fz	0,023	0,036	0,050	0,061	0,070	0,087	0,101	0,114
s	2	1,5 x D	0,3 x D	0,3 x D	25	_	40	fz	0,013	0,019	0,026	0,032	0,037	0,046	0,054	0,061
	3	1,5 x D	0,5 x D	1 x D	60	-	80	fz	0,019	0,029	0,040	0,048	0,056	0,070	0,081	0,091
	4	1,5 x D	0,5 x D	1 x D	50	-	60	fz	0,016	0,026	0,037	0,045	0,052	0,064	0,074	0,084
Н	1	1,5 x D	0,5 x D	0,75 x D	80	-	140	fz	0,021	0,033	0,045	0,054	0,062	0,077	0,088	0,098

ПРИМЕЧАНИЕ: нижнее значение скорости резания используется при выполнении операций со съемом большого припуска или при обработке более твердых материалов в пределах группы. Верхнее значение скорости резания используется при выполнении операций чистовой обработки или при обработке менее твердых материалов в пределах группы. Перечисленные выше режимы резания соответствуют идеальным условиям. При использовании фрез диаметром более 12 мм на обрабатывающих центрах невысокой мощности требуется корректировка табличных значений резания.

Высокопроизводительные цельные твердосплавные концевые фрезы \bullet VariMill $^{\scriptscriptstyle{\text{\tiny M}}}$

Рекомендации по применению • Серия 47N7 • VariMill I™ • Серия 577С • VariMill II™

							Серия	47N7	ALTIN • V	ariMill I						
			е фрезероват													
		Α		В	т	IAL	N		Значения Дл	подачи н	іа зуб fz уі ания пазо	казаны дл в (В) пода	ія торцево ічу fz умен	ого фрезе ньшите на	рования (10%.	A).
Гру	ппа					ть р м/м	езания, іин						 иаметр			
матер		ар	ae	ар	min		max	ММ	4,0	6,0	8,0	10,0	12,0	16,0	20,0	25,0
	1	1,5 x D	0,5 x D	1 x D	150	-	200	fz	0,028	0,044	0,060	0,072	0,083	0,101	0,114	0,124
	2	1,5 x D	0,5 x D	1 x D	140	-	190	fz	0,028	0,044	0,060	0,072	0,083	0,101	0,114	0,124
Р	3	1,5 x D	0,5 x D	1 x D	120	-	160	fz	0,023	0,036	0,050	0,061	0,070	0,087	0,101	0,114
	4	1,5 x D	0,5 x D	0,75 x D	90	_	150	fz	0,021	0,033	0,045	0,054	0,062	0,077	0,088	0,098
	5	1,5 x D	0,5 x D	1 x D	60	-	100	fz	0,019	0,029	0,040	0,048	0,056	0,070	0,081	0,091
	6	1,5 x D	0,5 x D	0,75 x D	50	_	75	fz	0,016	0,025	0,034	0,040	0,047	0,057	0,065	0,071
	1	1,5 x D	0,5 x D	1 x D	90	-	115	fz	0,023	0,036	0,050	0,061	0,070	0,087	0,101	0,114
M	2	1,5 x D	0,5 x D	1 x D	60	_	80	fz	0,019	0,029	0,040	0,048	0,056	0,070	0,081	0,091
	3	1,5 x D	0,5 x D	1 x D	60	_	70	fz	0,016	0,025	0,034	0,040	0,047	0,057	0,065	0,071
	1	1,5 x D	0,5 x D	1 x D	120	-	150	fz	0,028	0,044	0,060	0,072	0,083	0,101	0,114	0,124
K	2	1,5 x D	0,5 x D	1 x D	110	_	130	fz	0,023	0,036	0,050	0,061	0,070	0,087	0,101	0,114
	3	1,5 x D	0,5 x D	1 x D	100	-	130	fz	0,019	0,029	0,040	0,048	0,056	0,070	0,081	0,091
	1	1,5 x D	0,3 x D	0,3 x D	50	-	90	fz	0,023	0,036	0,050	0,061	0,070	0,087	0,101	0,114
s	2	1,5 x D	0,3 x D	0,3 x D	25	_	40	fz	0,013	0,019	0,026	0,032	0,037	0,046	0,054	0,061
	3	1,5 x D	0,5 x D	1 x D	60	-	80	fz	0,019	0,029	0,040	0,048	0,056	0,070	0,081	0,091
	4	1,5 x D	0,5 x D	1 x D	50	_	60	fz	0,016	0,026	0,037	0,045	0,052	0,064	0,074	0,084
Н	1	1,5 x D	0,5 x D	0,75 x D	80	[-	140	fz	0,021	0,033	0,045	0,054	0,062	0,077	0,088	0,098

ПРИМЕЧАНИЕ: нижнее значение скорости резания используется при выполнении операций со съемом большого припуска или при обработке более твердых материалов в пределах группы. Верхнее значение скорости резания используется при выполнении операций чистовой обработки или при обработке менее твердых материалов в пределах группы. Перечисленные выше режимы резания соответствуют идеальным условиям. При использовании фрез диаметром более 12 мм на обрабатывающих центрах невысокой мощности требуется корректировка табличных значений резания.

							Cep	оия 57	7C • VariM	lill II						
		-	фрезерован													
		Α		В	т	IAL	N							ого фрезе ньшите на		A).
Гру	ппа					ть р м/м	езания, іин					D1 — Д	иаметр			
матер		ар	ae	ар	min		max	ММ	4,0	6,0	8,0	10,0	12,0	16,0	20,0	25,0
	1	1,5 x D	0,5 x D	1 x D	150	-	200	fz	0,028	0,044	0,060	0,072	0,083	0,101	0,114	0,124
	2	1,5 x D	0,5 x D	1 x D	140	-	190	fz	0,028	0,044	0,060	0,072	0,083	0,101	0,114	0,124
P	3	1,5 x D	0,5 x D	1 x D	120	_	160	fz	0,023	0,036	0,050	0,061	0,070	0,087	0,101	0,114
_	4	1,5 x D	0,5 x D	0,75 x D	90	-	150	fz	0,021	0,033	0,045	0,054	0,062	0,077	0,088	0,098
	5	1,5 x D	0,5 x D	1 x D	60	_	100	fz	0,019	0,029	0,040	0,048	0,056	0,070	0,081	0,091
	6	1,5 x D	0,5 x D	0,75 x D	50	_	75	fz	0,016	0,025	0,034	0,040	0,047	0,057	0,065	0,071
	1	1,5 x D	0,5 x D	1 x D	90	-	115	fz	0,023	0,036	0,050	0,061	0,007	0,087	0,101	0,114
M	2	1,5 x D	0,5 x D	1 x D	60	-	80	fz	0,019	0,029	0,040	0,048	0,056	0,070	0,081	0,091
	3	1,5 x D	0,5 x D	1 x D	60	-	70	fz	0,016	0,025	0,034	0,040	0,047	0,057	0,065	0,071
	1	1,5 x D	0,5 x D	1 x D	120	-	150	fz	0,028	0,044	0,060	0,072	0,083	0,101	0,114	0,124
K	2	1,5 x D	0,5 x D	1 x D	110	_	130	fz	0,023	0,036	0,050	0,061	0,070	0,087	0,101	0,114
	3	1,5 x D	0,5 x D	1 x D	100	-	130	fz	0,019	0,029	0,040	0,048	0,056	0,070	0,081	0,091
	1	1,5 x D	0,3 x D	0,3 x D	50	-	90	fz	0,023	0,036	0,050	0,061	0,070	0,087	0,101	0,114
s	2	1,5 x D	0,3 x D	0,3 x D	25	_	40	fz	0,013	0,019	0,026	0,032	0,037	0,046	0,054	0,061
	3	1,5 x D	0,5 x D	1 x D	60	-	80	fz	0,019	0,029	0,040	0,048	0,056	0,070	0,081	0,091
	4	1,5 x D	0,5 x D	1 x D	50	_	60	fz	0,016	0,026	0,037	0,045	0,052	0,064	0,074	0,084
Н	1	1,5 x D	0,5 x D	0,75 x D	80	-	140	fz	0,021	0,033	0,045	0,054	0,062	0,077	0,088	0,098

ПРИМЕЧАНИЕ: нижнее значение скорости резания используется при выполнении операций со съемом большого припуска или при обработке более твердых материалов в пределах группы. Верхнее значение скорости резания используется при выполнении операций чистовой обработки или при обработке менее твердых материалов в пределах группы. Перечисленные выше режимы резания соответствуют идеальным условиям. При использовании фрез диаметром более 12 мм на обрабатывающих центрах невысокой мощности требуется корректировка табличных значений резания.

ЦЕЛЬНЫЕ КОНЦЕВЫЕ ФРЕЗЫРАСШИРЕНИЕ АССОРТИМЕНТА VARIMILL™

Центральный офис и офисы в различных странах мира

Kennametal Inc. WIDIA Products Group 1600 Technology Way Latrobe, PA 15650 USA Телефон: 800.979.4342

Электронная почта: w-us.service@widia.com

Европейский офис

Kennametal Europe GmbH WIDIA Products Group Rheingoldstrasse 50 CH 8212 Neuhausen am Rheinfall Швейцария

Телефон: (41) 52.6750.100

Электронная почта: w-ch.service@widia.com

Офис в Азиатско-Тихоокеанском регионе

Kennametal (Singapore) Pte. Ltd. 3A International Business Park Unit #01-02/03/05, ICON@IBP Singapore 609935

Телефон: 65.6265.9222

Электронная почта: w-sg.service@widia.com

Офис в Индии

Kennametal India Limited WIDIA Products Group 8/9th Mile, Tumkur Road Bangalore - 560 073

Телефон: +91 (80) 2839 4321

Электронная почта: w-in.service@widia.com

©2013 Kennametal Inc. Все права защищены. A-12-03039RU

