

ЦЕЛЬНЫЕ КОНЦЕВЫЕ ФРЕЗЫ РАСШИРЕНИЕ СЕРИИ КОНЦЕВЫХ ФРЕЗ ДЛЯ ЧЕРНОВОЙ ОБРАБОТКИ

Высокопроизводительные цельные твердосплавные концевые фрезы

Лидирующие на рынке высокопроизводительные концевые фрезы для черновой обработки WIDIA-Hanita™ универсальны в применении и являются надежным и высокоэффективным решением для широкого спектра операций и обрабатываемых материалов.

ЧЕРНОВАЯ ОБРАБОТКА

- Высокопроизводительные универсальные инструменты для обработки большинства материалов.
- Низкие силы резания и невысокая потребляемая мощность.
- Высокий удельный съем металла (MRR) даже на станках невысокой жесткости или при недостаточно жестком закреплении обрабатываемой детали.
- Профиль фрезы позволяет выполнять черновую и получистовую обработку.

Режущая кромка у центра позволяет выполнять плунжерное фрезерование и врезание под углом.

Различные углы наклона винтовой линии для конкретных операций и материалов.

Покрытие TIALN обеспечивает возможность работы на максимальных режимах резания и гарантирует высокую стойкость инструмента.

Серия высокопроизводительных фрез для черновой обработки

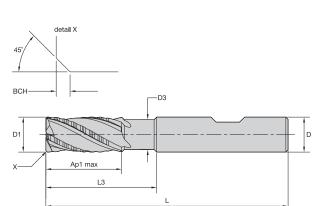
- Повышение производительности за счет меньшего числа смен инструмента и возможности выполнения черновой и получистовой обработки.
- Низкие силы резания, использование всей длины режущей части и исключительно высокая стойкость при прорезании пазов.

Серия 49N6

- Высокий удельный съем металла (MRR) и максимальная стойкость инструмента при обработке:
 - Конструкционной, легированной и нержавеющей стали
 - Чугуна
- Уменьшение диаметра обеспечивает увеличенные возможности доступа.

Серия 4969

- Высокий удельный съем металла (MRR) и максимальная стойкость инструмента при обработке:
 - Конструкционной, легированной и нержавеющей стали
 - Чугуна
 - Титана
 - Закаленной стали
- Оптимизированная форма сердцевины и геометрия со сферическим концом обеспечивают дополнительные преимущества.



Высокопроизводительные цельные твердосплавные концевые фрезы • Черновая обработка

Серия 49N6 • C занижением по диаметру

- Режущая кромка у центра.
- Плоский профиль.
- В таблицах представлены стандартные позиции. Дополнительные типы и покрытия доступны по заказу.

	Точность из	зготовления	
D1	Допуск d11	D	Допуск h6 + / -
≤3	-0,020/-0,080	≤3	0/0,006
>3-6	-0,030/-0,105	>3-6	0/0,008
>6–10	-0,040/-0,130	>6–10	0/0,009
>10–18	-0,050/-0,160	>10–18	0/0,011
>18–30	-0,065/-0,195	>18–30	0/0,013

			P				M			K			Н	
	1	2	3	4	5	1	2	3	1	2	3	1	3	1
ALTIN	•	•	•	•	•	•	•	•	•	•	•	•	•	•

Р – Сталь

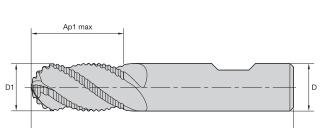
К – Чугун

S – Жаропрочные сплавы

М – Нержавеющая сталь N – Цветные металлы H – Закаленная сталь

■ Серия 49N6 • С занижением по диаметру

				глубина резания		длина		
ALTIN-MW	D1	D	D3	Ap1 max	L3	L	BCH	ΖU
49N604002MW	4,0	6	_	8,00	_	57	0,30	3
49N605002MW	5,0	6	_	13,00	_	57	0,30	3
49N606002MW	6,0	6	5,50	13,00	21,50	57	0,30	3
49N608003MW	8,0	8	7,50	16,00	26,50	63	0,30	3
49N610004MW	10,0	10	9,50	22,00	32,50	72	0,50	4
49N612005MW	12,0	12	11,00	26,00	38,50	83	0,50	4
49N614014MW	14,0	14	13,00	26,00	42,50	83	0,50	4
49N616006MW	16,0	16	15,00	32,00	44,50	92	0,50	4
49N618018MW	18,0	18	17,00	32,00	48,50	92	0,50	4
49N620007MW	20,0	20	19,00	38,00	54,50	104	0,50	4
49N625008MW	25,0	25	24,00	45,00	65,50	121	0,50	5



Высокопроизводительные цельные твердосплавные концевые фрезы • Черновая обработка

Серия 4969

- Режущая кромка у центра.
- Мелкий шаг.
- В таблицах представлены стандартные позиции. Дополнительные типы и покрытия доступны по заказу.
- Черновая геометрия даже на закругленной части концевой фрезы.

	Точность из	вготовления	
D1	Допуск d11	D	Допуск h6 + / -
≤3	-0,020/-0,080	≤3	0/0,006
>3-6	-0,030/-0,105	>3-6	0/0,008
>6–10	-0,040/-0,130	>6–10	0/0,009
>10–18	-0,050/-0,160	>10–18	0/0,011
>18-30	-0.065/-0.195	>18-30	0/0.013

				•			M			K				(S	Н			
	1 2 3 4 5 6					1	2	3	1	2	3	1	2	3	4	1	2	3	
TIALN	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•

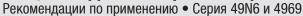
Р – Сталь

К – Чугун

S – Жаропрочные сплавы

М – Нержавеющая сталь

N – Цветные металлы H – Закаленная сталь


■ Серия 4969

TIALN-LW	D1	D	глубина резания Ар1 max	длина L	ΖU
496905002LW	5,0	6	13,00	57	3
496906002LW	6,0	6	13,00	57	3
496908003LW	8,0	8	16,00	63	4
496910004LW	10,0	10	22,00	72	4
496912005LW	12,0	12	26,00	83	4
496914014LW	14,0	14	26,00	83	4
496916006LW	16,0	16	32,00	92	4
496918018LW	18,0	18	32,00	92	4
496920007LW	20,0	20	38,00	104	4

WWW.WIDIA.COM HANIIA 5

Высокопроизводительные цельные твердосплавные концевые фрезы • Черновая обработка

									Сер	ия 49N6									
	Торцевое фрезерование (A) и прорезание пазов (B)																		
		A	A	В	А	LTI	N		Значения подачи на зуб fz указаны для торцевого фрезерования (A). Для прорезания пазов (B) подачу fz уменьшите на 10%.										
Γnν	ппа					ть р м/к	оезания, лин						D1 -	— Диам	етр				
1	оиала	ар	ae	ар	min		max	ММ	4,0	5,0	6,0	8,0	10,0	12,0	14,0	16,0	18,0	20,0	25,0
	1	1.5 x D	0.5 x D	1 x D	150	-	200	fz	0,024	0,031	0,037	0,049	0,059	0,072	0,080	0,087	0,093	0,098	0,105
	2	1.5 x D	0.5 x D	1 x D	140	-	190	fz	0,024	0,031	0,037	0,049	0,059	0,072	0,080	0,087	0,093	0,098	0,105
Р	3	1.5 x D	0.4 x D	0.75 x D	120	-	160	fz	0,020	0,025	0,031	0,041	0,049	0,061	0,068	0,075	0,082	0,087	0,097
	4	1 x D	0.3 x D	0.5 x D	90	_	150	fz	0,018	0,023	0,028	0,037	0,044	0,054	0,060	0,066	0,072	0,076	0,083
	5	1.5 x D	0.4 x D	0.75 x D	60	-	100	fz	0,016	0,021	0,025	0,033	0,039	0,049	0,055	0,060	0,065	0,070	0,077
	1	1 x D	0.4 x D	0.75 x D	80	-	100	fz	0,020	0,025	0,031	0,041	0,049	0,061	0,068	0,075	0,082	0,087	0,097
M	2	1 x D	0.4 x D	0.75 x D	60	-	80	fz	0,016	0,021	0,025	0,033	0,039	0,049	0,055	0,060	0,065	0,070	0,077
	3	1 x D	0.4 x D	0.75 x D	60	-	80	fz	0,014	0,017	0,021	0,026	0,032	0,039	0,044	0,048	0,052	0,056	0,060
	1	1.5 x D	0.5 x D	1 x D	120	-	160	fz	0,024	0,031	0,037	0,049	0,059	0,072	0,080	0,087	0,093	0,098	0,105
K	2	1.5 x D	0.4 x D	1 x D	110	-	140	fz	0,020	0,025	0,031	0,041	0,049	0,061	0,068	0,075	0,082	0,087	0,097
	3	1.5 x D	0.4 x D	1 x D	100	-	130	fz	0,016	0,021	0,025	0,033	0,039	0,049	0,055	0,060	0,065	0,070	0,077
s	1	1.5 x D	0.4 x D	0.75 x D	50	-	90	fz	0,020	0,025	0,031	0,041	0,049	0,061	0,068	0,075	0,082	0,087	0,097
	3	1.5 x D	0.4 x D	0.75 x D	50	-	80	fz	0,016	0,021	0,025	0,033	0,039	0,049	0,055	0,060	0,065	0,070	0,077
Н	1	1.0 x D	0.3 x D	0.5 x D	80	-	140	fz	0,018	0,023	0,028	0,037	0,044	0,054	0,060	0,066	0,072	0,076	0,083

ПРИМЕЧАНИЕ: нижнее значение скорости резания используется при выполнении операций со съемом большого припуска или при обработке более твердых материалов в пределах группы. Верхнее значение скорости резания используется при выполнении операций чистовой обработки или при обработке менее твердых материалов в пределах группы. Перечисленные выше режимы резания соответствуют идеальным условиям. При использовании фрез диаметром более 12 мм на обрабатывающих центрах невысокой мощности требуется корректировка табличных значений резания.

									Серия 49	969							
				рование (А) пазов (В)													
		1	A	В	Т	TIALN Значения подачи на зуб fz указаны для торцевого фрезерования (A). Для прорезания пазов (B) подачу fz уменьшите на 10%.											
From	Скорость резания, ус м/мин												— Диаме	етр			
	ппа оиала	ар	ae	ар	min		max	ММ	5,0	6,0	8,0	10,0	12,0	14,0	16,0	18,0	20,0
	1	1,5 x D	0.5 x D	1 x D	150	-	200	fz	0,036	0,044	0,060	0,072	0,083	0,092	0,101	0,107	0,114
	2	1,5 x D	0.5 x D	1 x D	140	-	190	fz	0,036	0,044	0,060	0,072	0,083	0,092	0,101	0,107	0,114
Р	3	1,5 x D	0.4 x D	0.75 x D	120	-	160	fz	0,030	0,036	0,050	0,061	0,070	0,079	0,087	0,094	0,101
	4	1,5 x D	0.3 x D	0.3 x D	90	-	150	fz	0,027	0,033	0,045	0,054	0,062	0,070	0,077	0,082	0,088
	5	1,5 x D	0.4 x D	0.75 x D	60	-	100	fz	0,024	0,029	0,040	0,048	0,056	0,063	0,070	0,075	0,081
	6	1,5 x D	0.3 x D	0.3 x D	50	_	75	fz	0,020	0,025	0,034	0,040	0,047	0,052	0,057	0,061	0,065
	1	1,5 x D	0.4 x D	0.75 x D	80	-	100	fz	0,030	0,036	0,050	0,061	0,070	0,079	0,087	0,094	0,101
M	2	1,5 x D	0.4 x D	0.75 x D	60	-	80	fz	0,024	0,029	0,040	0,048	0,056	0,063	0,070	0,075	0,081
	3	1,5 x D	0.4 x D	0.75 x D	60	-	80	fz	0,020	0,025	0,034	0,040	0,047	0,052	0,057	0,061	0,065
	1	1,5 x D	0.5 x D	1 x D	120	-	160	fz	0,036	0,044	0,060	0,072	0,083	0,092	0,101	0,107	0,114
K	2	1,5 x D	0.4 x D	1 x D	110	-	140	fz	0,030	0,036	0,050	0,061	0,070	0,079	0,087	0,094	0,101
	3	1,5 x D	0.4 x D	1 x D	100	-	130	fz	0,024	0,029	0,040	0,048	0,056	0,063	0,070	0,075	0,081
	1	1,5 x D	0.4 x D	0.75 x D	90	-	115	fz	0,030	0,036	0,050	0,061	0,070	0,079	0,087	0,094	0,101
s	2	1,5 x D	0.3 x D	0.3 x D	20	-	40	fz	0,016	0,019	0,026	0,032	0,037	0,042	0,046	0,050	0,054
	3	1,5 x D	0.4 x D	0.75 x D	50	-	80	fz	0,024	0,029	0,040	0,048	0,056	0,063	0,070	0,075	0,081
	4	1,5 x D	0.3 x D	0.75 x D	45	-	65	fz	0,021	0,026	0,037	0,045	0,052	0,058	0,064	0,069	0,074
	1	1,5 x D	0.3 x D	0.3 x D	100	-	140	fz	0,027	0,033	0,045	0,054	0,062	0,070	0,077	0,082	0,088
Н	2	1,5 x D	0.2 x D	0.2 x D	70	-	120	fz	0,020	0,025	0,034	0,040	0,047	0,052	0,057	0,061	0,065
	3	1,5 x D	0.2 x D	0.2 x D	60	-	90	fz	0,016	0,019	0,026	0,032	0,037	0,042	0,046	0,050	0,054

ПРИМЕЧАНИЕ: нижнее значение скорости резания используется при выполнении операций со съемом большого припуска или при обработке более твердых материалов в пределах группы. Верхнее значение скорости резания используется при выполнении операций чистовой обработки или при обработке менее твердых материалов в пределах группы. Перечисленные выше режимы резания соответствуют идеальным условиям. При использовании фрез диаметром более 12 мм на обрабатывающих центрах невысокой мощности требуется корректировка табличных значений резания.

ЦЕЛЬНЫЕ КОНЦЕВЫЕ ФРЕЗЫ РАСШИРЕНИЕ СЕРИИ КОНЦЕВЫХ ФРЕЗ ДЛЯ ЧЕРНОВОЙ ОБРАБОТКИ

Центральный офис и офисы в различных странах мира

Kennametal Inc. WIDIA Products Group 1600 Technology Way Latrobe, PA 15650 USA Телефон: 800.979.4342

Электронная почта: w-na.service@widia.com

Европейский офис

Kennametal Europe GmbH WIDIA Products Group Rheingoldstrasse 50 CH 8212 Neuhausen am Rheinfall Швейцария

Телефон: (41) 52.6750.100

Электронная почта: w-ch.service@widia.com

Офис в Азиатско-Тихоокеанском регионе

Kennametal (Singapore) Pte. Ltd. WIDIA Products Group 3A International Business Park Unit #01-02/03/05, ICON@IBP Singapore 609935

Телефон: 65.6265.9222

Электронная почта: w-sg.service@widia.com

Офис в Индии

Kennametal India Limited WIDIA Products Group 8/9th Mile, Tumkur Road Bangalore - 560 073

Телефон: +91 (80) 2839 4321

Электронная почта: w-in.service@widia.com

©2013 Kennametal Inc. Все права защищены. A-12-03040RU

